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Abstract

A direct numerical simulation has been carried out in order to clarify the effects of the high viscosity and the interfacial tension of
a droplet on the interaction between the droplet and near-wall turbulence. A liquid turbulent plane Couette flow with an immiscible
droplet of the same fluid density as that of the continuous-phase has been used. The diameter of the droplet is fixed at one-fourth of
the wall distance, which is nearly equal to 41 wall units. The droplet has been assigned in the range of 20-60 wall units from one
moving wall initially. The modified volume of fluid (VOF) algorithm and local grid refinement are used for tracking the phase
interface. The velocities for the fine grid are decided so that the equation of continuity is satisfied in the fine cell. It is found that the
deformation of the droplet due to the surrounding fluid flow is suppressed by the effect of the interfacial tension of the droplet. The
streamwise vortex is attenuated by the existence of the droplet with the interfacial tension. The small vortex is generated in the wake
region of the droplet. The Reynolds-shear stress product becomes higher in a wide region around the droplet. © 2001 Elsevier
Science Inc. All rights reserved.
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1. Introduction

Liquid-liquid two-phase dispersed flows are the primary
phenomena in engineering applications such as direct-contact
heat exchangers. The control of the flows is expected to con-
tribute to an efficient use of energy. Also, it was reported that
immiscible droplets are effective for drag reduction for turbu-
lent liquid flows in pipes (Pal, 1993; Angeli and Hewitt, 1998).
However, the structures and the dynamics of the flows have
not been well understood owing to the complexity of the in-
teraction between the deformable droplets and the surround-
ing fluid flow.

In order to clarify such interaction, our research group has
focused on interaction between droplets and surrounding
turbulence. We found that the droplet deformation and the
flow induced by the droplet depend on whether the droplet is
located near shear-dominant turbulence, strain-dominant tur-
bulence or eddy-dominant turbulence (Hagiwara et al., 1997a).
Attention was then focused on shear-dominant flows, which
not only have the capability to deform droplets but also play
an essential role in the production of turbulence energy. We
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also examined the interaction between a turbulent plane
Couette flow and a high-viscosity immiscible droplet without
the interfacial tension located at the center of the flow and
found that the droplet attenuated a streamwise vortex locally
(Hagiwara et al., 1997b). In this paper, the modified volume of
fluid (VOF) algorithm and local grid refinement were adopted
for tracking the phase interface. Although other methods, such
as the front-tracking method (Unverdi and Tryggivason, 1992)
and the level set method (Osher and Sethian, 1988) may be
applicable, they have not been fully adopted to the prediction
of bubbles or droplets in turbulent flow.

In the present study, a droplet is set near a wall, then the
deformation of the droplet with and without interfacial tension
are examined by direct numerical simulation using local grid
refinement. In the calculation of interfacial tension, we adopt
the method based on a spherical surface estimated from the
fraction of carrier fluid for fine cubic cells (Tanaka et al.,
1997). The first and the second derivatives of height functions
from the reference planes (i.e., the surfaces of computational
domain) to the interface can be applicable for estimating the
radius of curvature (Tomiyama et al., 1995). However, the
height function has a relatively large error for the interface in
the ‘middle latitude’ compared with that for the interface near
the ‘poles’ or the ‘equator’ of the spherical droplet, and the
noticeable deformations of the droplet due to the mean ve-
locity profile occur near the ‘middle latitude’. The continuum
surface force (CSF) model is also promising for the predic-
tion of the interfacial tension (Brackbill et al., 1992). In
this method, the transition region with finite thickness is
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Notation

center for spherical interface
Courant number
fraction of continuous-phase fluid
average value of F over domain
external body force per unit mass
half of the wall distance
number of grid points
mean kinetic energy per unit mass of carrier
fluid flow (= 1U?)
surface tension energy
size of computational domain
total number of points of intersection
between spherical surface and sides of cell
points of intersection between spherical
surface and side of cell
unit vector normal to the interface
pressure
radius of a spherical interface
e Reynolds number
interface area
time
U streamwise mean velocity
Uw constant speed of moving wall
u, v, w velocities in the streamwise, wall-normal
and transverse directions
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u',v'w fluctuating velocity components

Ul U, Wene  TOOt-mean-square of fluctuating velocity
components

U, friction velocity

—u't Reynolds shear stress

—u'v Reynolds-shear stress product

X, 0,z axes in the streamwise, wall-normal and
transverse directions

Greeks

Ax grid spacing in the x direction

Ax dimension of fine cubic cell

Ay(y) grid spacing in the y direction

Az grid spacing in the z direction

He viscosity of continuous-phase fluid

I viscosity of dispersed-phase fluid

v kinematic viscosity

p density

a surface tension coefficient

T viscous stress

w vorticity

Superscripts and subscript

OF value made dimensionless with the wall
parameters u, and v

()* value made dimensionless with Uy and &

™) value for fine cubic cell

0., point for the intersection

considered at any time step. However, the effect of transition
region on near-interface turbulence has not yet been validated.
Therefore, we do not apply these two methods. The effects of
the droplets on streamwise vortices in near-wall turbulence are
examined.

2. Computational procedures
2.1. Configuration

We considered a turbulent flow, realized between two
parallel walls at a distance of 2/ moving in opposite directions
with a constant speed of Uy (see Fig. 1), with immiscible
droplets between the walls. The x-, y- and z- axes were assigned
as in the direction of flow, normal to the wall and along the
transverse direction to the flow, respectively. The origin of the
coordinate was set at the center of the rectangular computa-
tional domain of the sides of 8% x 2i x 4h. The computational

Fig. 1. Computational domain.

domain was divided into 64 x 50 x 64 rectangular cells of the
sides of Ax x Ay(y) x Az. The cell dimension was set to be
uniform in the x and z directions, but non-uniform in the y
direction. We took Ay(y) as Ay(y)=Az=Ax/2 for
|v/h| <0.75 in the central core region, Ay(y) = Ay(0)/2 for
0.75< |y/h| <0.875,Ay(y) = Ay(0)/4 for 0.875 < |y/h| <0.992,
and Ay(y) = Ay(0)/8 for 0.992 < |y/h| < 1 in near-wall regions.
These dimensions are suitable for grid refinement mentioned in
Section 2.3 in each cell. In the present study, we set the Rey-
nolds number Re* based on Uy and /4 at 1300. The Reynolds
number, Re™, based on the friction velocity, u,, was 82.6, so
that the streamwise cell dimension was 10.36 in the wall unit.
In Table 1, the domain size (L., L.), the number of grid points
(Iy,1,,1.), the grid spacing, and the Reynolds numbers are
compared with those adopted in direct numerical simulations
for Couette flows without droplets done by Papavassiliou and
Hanratty (1997), Bech et al. (1995), Hamilton et al. (1995) and
Lee and Kim (1991).

The fluid density of the droplet was assumed to be the same
as that of the continuous-phase, and we focused on the effects
of the viscosity and the interfacial tension of the droplet on the
phase interaction.

2.2. Basic equations

The motion of the viscous incompressible fluid with con-
stant mass density is described by the Navier—Stokes equation
au, au,' ap a’f[j
%~ Mok o ox,

+/i (1)
supplemented by the continuity equation Ou;/0x;, = 0, where

Ou;  Ou;
Tij :#(x)(a"‘a—xj_) (2)
j i

and x = (x1,x2,x3) = (x,»,2). Here, (uj,uz,u3) = (u,0,w),
p, i, T; are the instant velocity, the pressure, the viscous
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Table 1
Dimensions of computational domain and grid arrangement®
Case L./h L./h I, I, L X,V V[V zug /v Re* = Uwh/v Ret =u.h/v
With droplet
Present 8.0 4.0 64 50 64 10.4 0.65, 1.3, 2.59, 5.18 5.18 1300 82.6
Hagiwara et al. (1997b) 4.0 4.0 64 44 64 5.28 0.75-5.28 5.28 1300 84.6
Without droplet
Papavassiliou and 4 2n 128 65 64 14.7 NA 7.36 2660 150
Hanratty (1997)
Bech et al. (1995) 107 4 256 70 256 10.1 0.70-3.94 4.0 1300 82.2
Hamilton et al. (1995) 1.757 1.27 16 33 16 [11.9] [0.17-3.4] [8.2] 400 33
Lee and Kim (1991) 4n 2.7n 192 129 288 11.1 0.20-6.4 49 3000 170
4[] indicates the average of time-varying values due to u, fluctuations.
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Fig. 5. Turbulence intensities in the case without droplet: (a) u,.., (b)
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Fig. 7. Snapshot of velocity vectors on a (x, z)-plane near the droplet
center.

Fig. 8. Deformation of droplet (a) fluid element, (b) high-viscosity droplet without interfacial tension, (c) high-viscosity droplet with interfacial tension.
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coeflicient, and the viscous stress of the fluid, respectively. The
viscous coefficient varies in space with the phases.
fi (i=1,2,3) represent the external body force per unit vol-
ume due to the interfacial tension. The constant fluid density,
p, was set at unity.

Eq. (1) was solved by using the finite difference schemes of
the staggered type and the fractional-step method (Kim and
Moin, 1985). The velocity components were defined at the
center of the cell surfaces, and the pressure and the external
force were given at the center of the cell volume (hereafter,
called grids). The second-order central difference scheme based
on the interpolation method (Kawamura, 1995) and the sec-
ond-order central difference scheme were applied for the finite-
differencing of the convection and the viscous terms of Navier—
Stokes equations, respectively. Poisson’s equation for the
pressure field was solved directly by using Fast Fourier
Transforms (FFT) and Gaussian elimination (Schumann and
Sweet, 1988). The third-order Runge-Kutta method (Rai and
Moin, 1991) was used for the time-integration of the convec-
tive, viscous, and forcing terms in Eq. (1). The Courant
number, Ct, based on the maximum axial velocity and the
axial dimension of the original cell, Ax, peaked at 0.09. Thus,
the Courant number, Ct, based on the dimension of the fine
cell mentioned below, Ax, was 0.72.

In the wall-normal direction, the non-slip boundary con-
dition and the Neumann boundary condition were imposed for
velocity components and the pressure, respectively. The peri-
odical boundary conditions were given for both velocity
components and the pressure in the x and z directions.

2.3. Modified VOF algorithm and local grid refinement

The position of the interface was determined by the fraction
of the continuous-phase fluid, F, occupying a cell. F =1 rep-
resents a cell filled with the fluid of the continuous-phase, while
F =0 indicates that the cell is filled with the fluid of the
droplet. The cells of 0 < F < 1 include the interface. The time
evolution of F was estimated with the modified VOF algorithm
(Hirt and Nichois, 1981), i.e., it was obtained by the convec-
tion equation as

OF oF
5 = _uka—xk' (3)

The second-order Adams—Bashforth method and the second-
order central difference schemes were used for the time-inte-
gration and the spatial-differencing of Eq. (3), respectively. In
order to obtain more points near the interface and to ap-
proximate the interface more locally and precisely, the local
grid refinement (Tanaka et al., 1997) was adopted. In this
technique, each original cell near the interface is further di-
vided into fine cubic cells of sides Ax = Ax/8. The points on the
interface were calculated for fine cells which contain the in-
terface by using the values of F. Eq. (3) was discretized on
these fine grids. The values of the velocity components at the
fine grids, required for solving Eq. (3), were estimated firstly by
linear interpolation of the velocity components of the original
cells, and then the estimated velocity was corrected so that the
equation of continuity was satisfied for each fine cell at any
time step. The local grid refinement was also effective for re-
ducing the numerical diffusion of F. The slope of the interface
was also taken into account (Shirakawa et al., 1996).

2.4. Viscous coefficient

In order to evaluate the viscous term in the Navier—Stokes
equation (the fourth term in Eq. (1)), the value of the viscous
coefficient is needed at the volume center (x,) or the centers of

the sides (x;) of the cell, depending on the special derivatives
Ou;/0x; + Ou;/0x; whether i = j or i # j, respectively. It was
evaluated as

p(x) = F(x)pe + (1 = F(x))uq, )

where . and 4 are the viscous coefficients for the continuous
and dispersed phases, respectively, and F is the average of F
over the domain whose dimension is the same as the original
cell and whose center is located at x = x, or x; (the box drawn
by the solid lines and that by the broken lines in Fig. 2, re-
spectively). Consistent application of evaluation of the viscous
coefficient near the interface may give high accuracy for the
calculation of the viscous term.

2.5. Interfacial tension
The interfacial tension was calculated by the following

procedure. Let N,(m=1,2,...,M) be the points of inter-
sections between the spherical surface, which approximates
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Fig. 9. Regions of high streamwise voriticity in the case without the
droplet: (a) t* =3, (b) # = 4.



T. Iwasaki et al. | Int. J. Heat and Fluid Flow 22 (2001) 332-342 337

0. 04

(b)

Fig. 10. Velocity distribution and color contour map of the difference between the Reynolds-shear stress product and the Reynolds shear
stress in the (y,z)-planes with the cross-section of the droplet (fluid element): (a) x/h=—14 (A in Fig. 9(b)), (b) x/h=-1.1 (B in

Fig. 9(b)).

the interface, and the sides of the original cell (see Fig. 3).
Here, the unit vector normal to the interface, n, was esti-
mated as

Efnlzl ny,

a |Ei\nl:1 ”m|7

where n,, = CN,, (m=1,2,...,M) and C denotes the center of
the sphere. The area of the spherical surface was approximated
by the sum of those of triangles which consist of the points
N,(m=1,2,...,M), and the point of intersection between the
spherical surface and the normal vector.

Using the interface area S and the radius R of the sphere
obtained above, the external body force in Eq. (1) was calcu-
lated as

n

sty = o gt )Sm =ogsicm. ()

where ¢ is the coefficient of the interfacial tension.

2.6. Computational condition for droplet

We have introduced the droplet with diameter of
4Ax(= 32Ax = 41.3v/u,) into near-wall turbulence. Computa-
tions have been performed for three different values of the
viscosity i, /uq and the interfacial tension o* (= ¢/pUg k) of the
droplet; (a) the fluid element (py/u, = 1,6* = 0), (b) the vis-
cous droplet without interfacial tension (u,/u, = 40,6* =0),
and (c) the viscous droplet with interfacial tension
(/1 = 40,0* = 1.0 x 1072). Since the introduction of the
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droplet with high interfacial tension causes inconsistency of
local turbulent flow field, particularly just after the introduc-
tion in the computation, the interfacial tension in case (c) was
kept low. Then, the effect of the introduction of the droplet on
the main flow was not serious because the ratio of the surface
tension energy at the initial, K, to the kinetic energy of the
carrier fluid flow per unit mass, K, was at highest 0.0625 lo-
cally. Therefore, the effect of the droplet on the whole flow
field was negligibly small.

The initial velocity field for the three cases was identical.
The initial position of the center of the droplet was (-1.5, 0.5,
—0.5), and identical for the three cases.

3. Results and discussion
3.1. Turbulence statistics in the case without the droplet
The mean velocity and the turbulence intensities in the

case without droplets were calculated from the ensemble av-
erages over space and time for 1250h/Uw(6560v/u?) after the
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Fig. 11. Regions of high streamwise voriticity in the case with the
droplet without the interfacial tension: (a) t* = 3, (b) #* = 4.

statistically stable state was confirmed. The profiles of the
mean velocity and the turbulence intensities are shown in
Figs. 4 and 5, respectively. For comparison, we also show the
experimental results measured by Bech et al. (1995) at the
Reynolds number of Re* = 1260, those measured by Aydin
and Leutheusser (1987, 1991) at Re* = 1300 and the numer-
ical results obtained by Bech et al. (1995) at Re* = 1300. The
present computational results show fairly good agreement

with the experimental data except u/ in the core region.

Higher values of u/ . and lower values of v/ . than those
measured or predicted (Bech et al., 1995) are observed in the
present results. The identical discrepancy is also found in the
computational results of Lee and Kim (1991), and Papavas-
siliou and Hanratty (1997). It is considered for the reason of
this discrepancy that very-large-scale eddies (Bech and An-
dersson, 1994) contributing to the redistribution of the tur-
bulence are not predicted properly because of the periodical
boundary condition and the small computational domain.
However, the boundary condition and the domain do not
exert serious influence on the prediction of the developing
small-scale streamwise vortices.

3.2. Time change in droplet volume

Fig. 6 demonstrates the time change in the droplet vol-
ume for the interval of 64/Uyw (= 31.5/vu?). The volume was
defined as the sum of the values of (1 — F) for each fine cell.
The volume of fluid lump increases rapidly with time due to
the numerical diffusion. The volume of high-viscosity droplet
without the interfacial tension is found to increase more
gradually than the fluid lump. The numerical diffusion was
attenuated by the high viscosity. The conservation of the
volume of high-viscosity droplet with the interfacial tension
is satisfactory throughout the interval. We found that the
small-scale deformation of the interface, which may cause
the numerical diffusion, becomes noticeable after
t*(=tUw/h) = 4. Since the period of 44/Uy is estimated to
be comparable to that of the development of small-scale
coherent structures, we focus on the phase interaction for
the period.

3.3. Secondary flow along the interface

Fig. 7 shows a snapshot of the velocity field on an (x,y)-
plane near the center of the droplet with interfacial tension
at * =4. Light grey region in this figure represents the
droplet. Secondary flow in the wall-normal direction is
found on both sides of the droplet. Similar secondary flow
was observed experimentally for the oil droplet with higher
interfacial tension (uy/p. = 20,0* = 4.0 or 5.5 x 1072) at the
center of the turbulent Couette water flow (Hagiwara et al.,
1998, 2000). It is shown from Figs. 6 and 7 that the droplet
with interfacial tension can be predicted for the period of
4h/Uy.

3.4. Deformation of the droplet

The droplet shapes at * =4 are drawn in Fig. 8 for (a)
the fluid element, (b) the viscous droplet without interfacial
tension, and (c) the viscous droplet with interfacial tension.
In these figures the upper (lower) wall is moving in the right
(left) direction. Fig. 8(a) shows that the fluid element is
highly deformed by the mean velocity of the surrounding
fluid and the numerical diffusion. By comparing Fig. 8(b)
with Fig. 8(a), we can see that the high-viscosity droplet is
still elongated in the x direction and squeezed in the z di-
rection but less deformed than the fluid element, which in-
dicates that the high viscosity of the droplet suppresses the
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-0.04

(b)

Fig. 12. Velocity distribution and color contour map of the difference between the Reynolds-shear stress product and the Reynolds shear stress in the
(y,z)-planes with the cross-section of the viscous droplet without the interfacial tension: (a) x/h = —1.4, (b) x/h = —1.1.

deformation of the droplet. In contrast with these two types
of droplets, the high-viscosity droplet with interfacial tension
is neither elongated nor squeezed in Fig. 8(c). It seems that
the local deformation of the droplet seen in Figs. 8(a) and
(b) is attenuated by the restoration force due to the inter-
facial tension acting on the part of the droplet (marked *)
where the interfacial curvature is large. In summary, the
deformation of the droplet caused by the surrounding carrier
fluid is particularly suppressed by the interfacial tension of
the droplet.

3.5. Interaction between the droplet and streamwise vortices
We extracted near-wall coherent structures from the tur-

bulent Couette flow as regions of high streamwise vorticity ;.
Dark grey and black regions shown in Fig. 9 represent those of

i = wh/Uy = —-2.0 and ! = 2.0, respectively. The trans-
parent upper (tiled lower) wall is moving in the upper-right
(lower-left) direction in the figure. The black region near the
center of each figure can be regarded as a streamwise vortex
since it was also captured by the vortex-identification method
proposed by Jeong et al. (1997). It was found from the suc-
cessive computational results that this streamwise vortex was
generated at about * = 1 and developed as time proceeded: the
leg extended to the downstream (#* = 3) and the head extended
to the upstream and to the axis (+* = 4).

Fig. 10 demonstrates the velocity field in two adjacent
(y,z)-planes at the same instant as that in Fig. 9. Clockwise
fluid motion is clearly seen in the upper part of each figure,
which is due to the streamwise vortex drawn in black in Fig.
9. Since this vortical motion is strong, the fluid element had
been elongated downward. Fig. 10 also indicates the color
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contour map of the difference between the instantaneous
Reynolds-shear stress product and the Reynolds shear stress,
[—u'v — (—u'V')]/U},. Red and yellow show positive value of
the difference, while blue and dark blue show negative values.
The higher values of the product than its spaciotemporal
average, which may contribute to the production of turbu-
lence, are found in a region in the downward flow by the
fluid motion. This is because fluid lump with high streamwise
velocity (+u') near the moving wall is transported into the
core region of low streamwise velocity with high downward
velocity (—v'). Similar regions are seen in the central part of
this figure. These were caused by the other streamwise vor-
tices, which had already been developed. By comparing the
size and the wall-normal location of these regions, the
streamwise vortex in the upper part of the figures is found to
be still developing.

Fig. 11 shows the high-vorticity regions in the case with the
high-viscosity droplet without interfacial tension. Light grey
region represents the droplet. Comparing Fig. 11 with Fig. 9,
we notice that the streamwise vortex (the black region of
o’ =2.0) near the droplet is shorter than that without the
droplet at #* = 3. This indicates the interaction between the
droplet and the streamwise vortex. Then, the evolution of
the head of the streamwise vortex was attenuated by the
droplet at ¢ = 4.

Fig. 12 demonstrates the velocity distribution in the same
(y,z)-planes as those in Fig. 10 with the cross-section of the
high-viscosity droplet. The higher region of Reynolds-shear
stress product than its average does not change noticeably by
the existence of the high-viscosity droplet. On the other hand,
the downward fluid motion is enhanced near the lower part of
the droplet in Fig. 12(b) because the fluid in the motion cannot
penetrate the droplets.

In Fig. 13, the regions of w! =2.0 and o= —-2.0 are
plotted for the case with a high-viscosity droplet with the
interfacial tension. The vorticity field near the droplet is
much different from that in the other two cases: Two small
vortices with positive vorticity are seen near the droplet in the
figure. The longer one is the streamwise vortex, which is
highly attenuated by the droplet. The smaller one is found to
be induced by the droplet. This is related to the wake flow of
the droplet. Judging from the velocity field shown in Fig. 7,
the velocity difference across the interface is more noticeable
at the lower part of the droplet than that at the top of the
droplet. This is consistent with the smaller region of high
vorticity.

Fig. 14 demonstrates the velocity distribution in the same
(»,z)-planes as those in Fig. 10 with the cross-section of the
high-viscosity droplet with interfacial tension. The fluid mo-
tion along the right-hand side of the droplet in Fig. 14(a) is
not circulating but translational. Furthermore, not vortical
motion but only small-scale velocity fluctuations are seen in
Fig. 14(b). The color contour shows that the regions of
higher values for the product than the average near the upper
wall are much more localized compared with those in Figs. 10
and 12. On the other hand, the regions in the central part of
the figure become larger than those in Figs. 10 and 12. These
are due to the translational fluid motion. It is obtained from
the computational data that these interactions continue for
long time in the period examined. We expect that this kind of
gradual, long-lasting interaction may cause a change in sta-
tistical quantities, such as a decrease in the wall shear stress,
i.e., drag reduction.

4. Conclusions

We have conducted the direct numerical simulation of a
liquid turbulent Couette flow with immiscible droplets. The
main conclusions obtained are as follows.

1. A droplet in a turbulent Couette flow is deformed locally by
the carrier fluid flow, but the deformation is particularly
suppressed by the effect of the interfacial tension of the
droplet.

2. Near-wall streamwise vortex is attenuated by the existence
of the droplet with the interfacial tension.

3. The small vortex is generated in the wake region of the
droplet.

4. The Reynolds-shear stress product becomes higher in a
wide region around the droplet. This is due to the transla-
tional flow induced by the droplet.
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Fig. 14. Velocity distribution and color contour map of the difference between the Reynolds-shear stress product and the Reynolds shear stress in the
(y,z)-planes with the cross-section of the viscous droplet with the interfacial tension: (a) x/h = —1.4, (b) x/h = —1.1.
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